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Abstract

The clinical application of dynamic ECT reconstruction
algorithmsfor inconsistenprojection(IP) datahasbeenbeset
with difEculties. Theseinclude poor scalability numerical
instability of algorithms, problems of non-uniquenessof
solutions, the need to oversimplify tracer kinetics, and
impractical computationalburden. We presenta stable,
low computational cost reconstructionalgorithm which is
able to recover the tracer kinetics of several hundredimage
regions at realistic noise levels. Through optimal selection
of a small set of non-ngative basis functions to describe
regional time-actvity curves(TACs), we are ableto solve for
the £rst-ordercompartmentaimodel kinetics of eachregion.
A non-uniform resolution pixelization of image space is
employed to obtain highestresolutionin regions of interest.
Thesespatialandtemporalsimpli£Ecationsimprove numerical
conditioning, provide robustnessagainst noise, and greatly
decrease¢he computationaburdenof dynamicreconstruction.
We apply this algorithm to IP phantomdata whose source
distribution, kinetics and count statisticsare modeledafter a
clinical myocardialSPECTdataset.TACs of phantomregions
arerecoveredto within ameansquareerrorof 6%, anaccurag
which provessufEcientto allow for quantitatve detectionof a
myocardialperfusiondefectwithin healtty myocardialtissue.

I. INTRODUCTION

First-order compartmentalmodels are routinely used to
describe pharmacokineticswithin biological systems. The
responsef such modelsare governedby £rst-orderlinear
differential equations, usually driven by a single forcing
function correspondingo the input of a particularsubstance
into the compartmentabkystem. As such, the responsesake
the form of the corvolution of the sums of decayingreal
exponential terms with this input function. Exponential
spectralanalysisinvolvesthe quanti£catiorof the coeEcients
of theseexponentialterms(modes)within the compartmental
model response,in terms of a preselectedspectrum of
exponentialfunctions[1]. This approachobviates the need
for iterative estimation of the non-linear parameters(rate
constants)of a compartmentalmodel, allowing cornvenient
solutionvia linear methods. Unfortunately owing to the fact
that sums of decayingreal exponentialsare not uniquely
parameterizedn the presenceof noise, solutionsin terms
of spectralcoeEcientsmay not be unique[2, 3]. A strong
dependencamay consequentlyexist betweenthe particular
solutionobtainedandthe noisepresentwithin the data.

We have previously shavn how unigue representations
of compartmentamodel responsesnay be obtainedthrough
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the representatiorof an exponential spectralbasisusing an
orthogonalapproximatingbasis[4, 5]. This techniquegreatly
reducesproblem dimensionand ensuresthat ary solution in
termsof the coeEcientsof this basiswill be unique.However,
this schemeéhastwo disadwantages:

1. The new basisfunctions possessegative values, and
in general require negative coefcients in order to
approximateanexponentialspectrarange.

2. The coekcients obtained do not have obvious
physiologicalsigni£cance.

In this paper we addressthe former issue by transforming
the orthogonalbasissetso that a broadexponentialspectrum
may be approximatedn terms of non-ngative basis(NNB)

functions, linearly combinedusing non-ngative coekcients
(NNC).

We cannotaddresshe secondssueusinga changeof basis
functions,sincesucha changewill almostinvariably leadto a
representatiom which thekinetic parametersvill be devoid of
physiologicalmeaning.However, this consideratioris arguably
spurious if the time-actvity curves (TACs) for all image
regionsareaccuratelyrecovered,sinceary modelmaythenbe
£t to these. Our primary goal in this work is to demonstrate
howvw the NNB-NNC representation,used in conjunction
with a non-uniformresolutionreconstructiongrid, leadsto a
tremendouseductionin the dimensionof the problemof direct
dynamicemissioncomputedomograply (ECT) reconstruction
from inconsistentprojections. By minimizing the numberof
parametersthis approachtendsto improve problemcondition,
leadingto an overdeterminedlynamicimagingsystemmatrix.
Thisin turnimprovesrobustnessaginstnoisewhich facilitates
therecovery of TACsto anaccuray sufEcientto allow clinical
diagnosishasedn resultsobtained.

[I. PROBLEM FORMULATION

A. Kinetic mode

Sinceoneof themostcompellingapplicationf algorithms
for direct reconstructiorfrom inconsistenfprojections(DRIP)
lies in clinical myocardial ECT, we chooseto addressthe
dynamicsof the £rst-ordersingle compartmentamodel. This
model is appropriatefor tracerssuch as %™ Tc-teboroxime,
whoseuptale and washoutfrom the myocardiumhave been
shovn to correlatewith blood @ow and consequentlymay
sene as a good indicator of myocardial defectsassociated
with ischemiaand infarctedtissue[6]. This kinetic modelis
representedchematicallyn Figurel.

Accordingto this model,thetime-actvity within regionn is
givenby:

On(t) = k7 (1) w0 Y, (1)



where i(t) is the measuredblood input function, and the
‘' operator denotesconvolution. The constantsk; and
ko representthe wash-in and wash-out coeEcients of the
compartment,respectiely. We assumethroughoutthat the
blood input function has been obtained via arterial blood
sampling. In caseswherethe projectiondataare reasonably
consistent, the input function may be estimatedfrom the

actiity within theleft ventricularbloodpool [7].

B. Geometric model

Without loss of generality for purposesof illustration we
refer to the 2D non-uniform resolution pixel grid shovn in
Figure?2.

The TAC ¢, [!] is assignedo the nth region Q,,(x), n =
1,2,..., N. In generalwe requirethatthe underlyingsource
distribution Q(x) be completelysegmentednto regionsin this
way.

C. Reconstruction problem

Givenasetof projectionmeasurementg(6(¢t)) acquiredat
timest =1¢;,, [l =0,1,..., L — 1, atanglesd[l], our objectve
is to recover the time actiity curves ¢, [!] for all N regions.
This amountsto reconstructinga dynamicimage sequencef
length L.

I11. ALGORITHM FORMULATION

This algorithm representsan extensionof the convolved-
orthogonabasisreconstructioralgorithm (COBRA) described
in [5]. Theformulationis very similarto COBRA, exceptthat
we now introducea new basisand non-ne@ativity constraints
on the reconstructedACs. We also generalizethe algorithm
to accommodateirregular time sampling of projections.
Owing to the small number(N < 10) of regions presentin
the sgmentationto which COBRA was appliedin [5], these
constraintsproved unnecessary However, their imposition
is essentialto ensure that physically realistic TACs are
recoveredin the solutionof problemsof larger dimension.For
completenessa brief overview of the COBRA framework is
given, before the extensionsare presented. In addition, the
entire procedurefor the generatiorof the TAC approximating
basisis illustratedschematicallyn Figure3.

Ky
Q(1)
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Figure 1: Compartmentalmodel for %°"Tc-teboroximein the
myocardium. Here, Q(t) representshe tracer actvity within the
myocardiumwhile othersymbolsarede£nedvithin thetext.
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Figure2: Non-uniformresolutionpixel grid. Sucha grid is proposed
in orderto offer increasedesolutionin areasof clinical interestwhile

reducingthe overall problemdimension. Although the pixels of the

highestresolutionregion arenot labeledin the £gure,region numbers
aresimilarly assignedo thereto.

A. Spectral representation of single compartment
model kinetics

Our kinetic model formulation begins by generalizing(1)
to the casewherethe TAC of eachregion may be composed
of linear combinationsof the response®f several underlying
compartments. This is often useful for modeling tissue
heterogeneitypartialvolumeandspillover effects[8]. We thus
have: )

N )
Gu(t) =Y KTi(t) xe R, 2
m=1
where M is the numberof exponentialmodes(compartments)
from whichthe TACsmayderive.

Sincethealgorithmwill bebasedn discretgime,we sample
the imagingtime intenal at L pointst = t;, t;31 > t, 1 =
0,1,..., L — 1 giving:

L

an[l] = ¢n(t)

l

|
—

5(t—tl), (3)

i
=

whered(t) is the Dirac deltadistribution.

In (2) we seethat eachTAC dependson-linearlyon the
parameterky. As the projection measurementgonstitute
sumsof TAC values, they are composedof weighted sums
of cornvolved exponential functions. The determinationof
the values of these parametersconstitutesthe extremely
ill-conditioned problem of resolving the components of
exponentialsums[2, 3]. We wish to linearizethe problemand
improve its condition. To do this, we employ the exponential
spectralmethod of Cunninghamet al. and deEnea set of
sampled exponential functions which span the range of
physiologically feasiblecompartmentainodesexpectedwithin
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generatingthe oblique-rotatedcorvolved orthogonal basis. The
rightmostcolumnreferencesherelevantequationsn thetext.
theimageddistribution [1]:
fall] = e k5 LAL 1=0,1,...,L—1, )
m=1,...,M—1. (5)

It is importantthat A¢ be small enoughto ensureadequate
sampling of the spectral functions. The number of basis
samplesL. must be greaterthan or equalto the number of

projectionsamplingtime points L, sincethe latter will always
be a subsetof the former While the latter may be irregularly

sampled,the former must be sampledregularly, for reasons
thatwill becomeclearshortly

Typically, we desirethe ability to modelthe presencef the
the blood input function within the imageddistribution. This
correspondsvithin the spectralcontext to corvolution with an
exponentialbasisfunction (4) having k3 = oo. This function
is equivalentto the Dirac deltadistribution. The spectraket(4)

is consequenthaugmentedby:
frll] = o],

whered[{] is theunit sample.

We thenform the (L x M) matrix X whosernth column
is f[l] asde£nedn (4). Convolving eachcolumnof X with
thebloodinputfunctioni[l] = i(IAt), I =0,1,..., L — 1 we

form:
/ !
(Cl CN{>

where we have retainedonly the £rst L elementsof the
convolution, sothattherow dimensionof C’ is L.

(6)

c 4 7)

/
C2

In realistic imaging scenarios,residual actvity may be
presentin the imageddistribution, perhapsfrom a previous
tracerinjection. In orderthat suchan offset may be modeled,
we augmentC’ with acolumn:

c (8)

/ —_— -
M+1 — 1L

wheretheright-handsideis a columnvectorof L ones.

B. Orthogonalization of spectral basis

We now invoke the singularvaluedecompositior(SVD) to
£ndorthogonabasisvectorsfor therangeof C’. Thesearethe
left singular(column)vectorsu,; of theSVD of C':

C' =USVT, U= (u1 up - uMH) 9)
whereV is the matrix of right singularvectors,andS is the
diagonalmatrix of singularvalues. We associatehe discrete
time index [ with eachrow of U. Dependingon the degreeof
accuray requiredin the sampledrepresentationf the ¢, (t),
we utilize only the£rst M < M of U andde£ne:

).

Typically, M =~ 3 to 5 is sufEcientfor myocardialimaging
applicationsFigure4 shavsthecolumnsof U whenM = 5.

U = (111 uz -+ (10)

Eachcolumnof U representa basisfunction,andwe have
plottedthesefunctionsin Figure4.

We referto the u,,, asconvolved-orthogonabasisfunctions
(COBs).TheCOBwill, in generalpossesaegative excursions.
SinceTAC valuesare alwayspositive, their usein large DRIP
problemsrequirestheimplementatiorof the constraints:

M
Gnll] =D tmnumll] 20, 1€R (11)
m=1

where ., is the coeEcientof the mth basisfunction for the
nthregion. Thevalueu,,[l] correspondso the (I, m)th element
of U. Werecognizehattheconstraintsieedonly beenforcedat
theextremaof the basisfunctions,aswell asatthe£rstandlast
samplingpoints. Imposition of theseconstraintsis sufcient
to precludenggative excursions. Equivalently, the setof time
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Figure4: Marny of theelementof U (samplef theorthogonabasis
functions)are negative, asis obvious from theseplots of the columns
of U.

indicesat which constraintsareenforceds givenby:

Rﬁ{z

U [l 4+ 1] > un[l], um[l] < um[l — 1],

1=1,2,...,L—2;
Ul + 1] < up[l], um[l] > um[l — 1],
1=1,2,...,L —2;

=0, l:L—l}.

The left-handside of (11) givesthe the TAC valuefor the
nth region at discretetime index I. ThevalueZ = |R| < L
correspondsto the number of time indices at which the
constraintsare imposed. We de£ne the total number of
constraintsf’ £ =N.

Theconstraintg11) mayberewritten asthe matrix product:

¢=Ap (12)
whereA € REV*N is ablock diagonalmatrix.

We desire that ¢,[/] be non-ngative for all n and
[ € R. However, this leadsto a very large matrix A, whose
dimension scalesas the squareof the number of regions.
This approachconsequentlybecomesimpractical for higher
resolution reconstructionproblems, where the number of
regions is large, unlesssparsestorageis usedfor A. Even
undersuchcircumstancegheimpositionof =N constraintds
computationallyburdensome.

C. Construction of non-negative basis through afEne
transformation

The problemdescribedabose would be greatly simplifed
if a non-ngative basis,non-ngative coeEcientrepresentation
was available. To this end we begin by expressingthe
convolved original spectrumC’ asan approximationin terms
of theorthogonabasis:

C ~Up,, (13)

wherep, € RM>*(M+1) js amatrix of known coeEcients.

Employing theobliquerotationmethodproposedy Siteket
al.in [9], weintroduceaninvertiblematrix R within theidentity
R 'R, giving:

C' ~ UR 'Ry, (14)
= (UR ) (Rpu,) (15)
= C(R) p,(R). (16)

To yield the desiredbasis,the elementsof C(R) and ., (R)
mustobey:

¢m >0, 1=1,2,..., L, m=12...,M
e >0, m=12,...,M, m=0,1,..., M+1

_ a7)
respectiely, whereé'™ is the (I, m)th elementof C(R) and
um™ the (m, m)th elementof p, (R).

In orderto £nd C(R) thusspecifedye formulatethe cost

function:
L M
F(R) = max { dO> @™ IEm <o),
=1 m=1
M M+1 ) i
D> W™ I < 0>} (18)
m=1 m=1

where I() is an indicator function assumingthe value unity
when its argumentis true. Clearly F(R) is discontinuous,
and cannot be minimized using corventional optimization
algorithms.lt is possibleto replacel () with anapproximating
continuousfunction, such as a logistic function. However,
sincethereexist mary solutionswhich satisfy (17), sampling
algorithmswhich do not require cost function continuity can
easilyEndasolutionto (18). We employed Adaptive Simulated
Annealing, using default algorithm parameterg10], to yield
thebasisshavn in Figure5. Here,ASA terminatedvhenF(R)
waslessthan0.5 x 1076, atolerancewhich proved sufEcient
for this applicationand correspondedo a maximumnegative
excursionof ary basisfunctionof 2.7%of the maximumvalue
of the function. The small negative elementsof C were set
to zeroto prevent ary negative valuesoccurring amongthe
reconstructedAC samples. The ASA algorithm executedin
503 minuteson a Pentiumill 850MHzprocessar

D. Evaluating the accuracy of TACs approximated
using non-negative basis
It is importantto evaluatethe quality of the approximation

obtainedusingthe oblique-rotateccorvolved-orthogonabasis
(ORCOB).To thisend,we de£nethe metric:

o)’
i=o 1

L—1
=0

My, (21], 2[1]) =

(19)

wherez[l] and z[l] arethe true and estimatedfunctionsto be
comparedrespectiely.
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Figure5: Oblique-rotatedrersionsof the orthogonalbasisfunctions
which appeatin Figure4.

Let us take for example the basisset shovn in Figure 5.
This ORCOBwas derived from the COB functionsshaown in
Figure4, which werein turn derivedfrom an (M — 1) = 100
function exponentialspectrum selectedby regularly sampling
the intenal k; € [1073, 1Jmin~'. After augmentatiorof
the spectrumwith a unit sample,corvolution with the input
function i[l] = [Ate ~'A%/97 was performed. Subsequent
augmentationwith constantfunction (8) was followed by
applicationof the SVD andretentionof only the £rstfve u,,.
This entireprocesss outlinedin Figure3.

We canapproximatehe columnsof the convolvedspectrum
C’ (shawn in Figure6) usingthe ORCOB functions(shavn in
Figureb) giving:

A ~ A

C=CR)uo (20)
wherethe mmth elementof y, is "™ andR is a solutionof
F(R) =0.

Let thefunctions:
[=0,1,..., L—1 (21)
1=0,1,...,L—1 (22)

e, M +1,

énlll,  m=0,1
m=0,1,..., M +1,

c'l' [l]a

m

representhe nth columnsof € andC’, respectiely. We may
then £nd the maximum approximationerror amongall the
convolvedspectrafunctionsas:

M gumax = Mo (e[, ém]1]) = 1.3%, (23)

max
m=0,1,..., M+1
a resultwhich is entirely satishctory The ¢/, [] are plotted
versugtheé,; [ 1] in Figure6.

Until this point, we have presered the regular samplingof
the basisfunctionsto allow us to easily corvolve the rotated
orthogonalbasiswith the input function. At this juncture,we
may samplethe ORCOB at the projectionsampletime points.
Element! of columnvectorm of the sampledORCOB matrix
C is givenby:

cm[l] :Em[k/]a
K ={k:kAt=1t;, k=0,1,...

, L} (24)
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Figure 6: The approximationof the corvolved spectrumusing the
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third spectrafunctionis shown for clarity.
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The DRIP problem may now be reexpressedas one of
estimatingthe coeEcientsy™™ of the ¢, for all regions, so
thatthe TAC of eachregion mayberecovered:

M

onll]

nmn

= ammten[l], l=0,1,...,L—1. (25)

m=1

We mustnow specifyhow the ji,,,, maybe estimatedjiven
theinconsistenprojectionmeasurements.

V. PROBLEM SOLUTION

In orderto solve the DRIP problemas linear system,we
mustconstructa matrix which mapsp € R~ >1 containing
the x™", to the projectionbin measurementg ¢ R7TC*1:

y=Fpu, (26)
whereT is thetotal numberof angulamprojectionsand( is the
numberof binsperangularprojection.

The constructionof F € RT@*MN has beendescribed
in detail previously [5]. Brieay, this matrix senesto express
each projection bin measuremenin terms of the fractional
contritution of eachimaged region to that bin, multiplied
by the fractional contritution of eachbasisfunction to each
region:

N M
Upqlll = lgﬁq x Z " em [”]
n=1 m=1
1,2,...,T
q = 1,2,...,Q.

Thematrix F containghegeometrionveightingfactorsg andthe
basisfunctionvaluesc arrangedn sucha way thatthe product
in (26) is readily effected.

When £ne pixelizationsof the image spaceare employed,
eachpixel contritutesto only a handful of bins within each



angulamprojection.ConsequentlyF is very sparselypopulated.
This is a fortunate characteristic since densestorageof this
matrix becomegprohibitive for large problems.

Previous experience[5] has shovn that an unweighted
least squaresestimatoris able to provide virtually unbiased,
highly efEcient estimatesjy at projection data noise levels
which are typical for dynamic SPECT studies. This implies
that the statistical mismatch implicit in applying the least
squaresestimatorto Poissondatais not a signiEcantsourceof
estimatiorerror.

Consequentlywe chooseto £nd the parameteestimateji
which solvesthe constrainedeastsquaregproblem:

o) = min |y - Ful 27)
Zé{HG%AJle:anZO}7 (28)

where
= [un’ 2! "u]vﬁ’ iz , MMN]_ (29)

Since all of the elementsof F are non-ngative, the
constraintg28) aresufEcientto ensurehattherecoveredTACs
in (25) arenon-neative at all time points.

We henceforthrefer to this algorithm for the estimation
of p as the oblique-rotated convolved-orthogonal basis
reconstructioralgorithm(ORCOBRA).

V. NUMERICAL METHODS

Problem (27-28) constitutesa non-ngative least squares
(NNLS) problem. As such,innumerablemethodsexist for its
solution. An excellentreview of thesealgorithmsappearsn
[11].

We desireanalgorithmwith thefollowing characteristics:

1. Utilization of sparse matrix storage for matrix F.
Algorithms which do not require input of the matrix
F, but only the products,Fx and F”y, are especially
suitedto this application. This stemsfrom the fact that
F is separablento the element-by-elemenproduct of
two matriceswhich eachcontainmary identical blocks
[12, 5].

2. Preseration of numerical precision. The algorithm
shouldnot calculatethe productF” F [11].

3. An iterative implementation,which reEnesa starting
estimatds desirablefor warm-startingof reconstructions
on higher resolution pixel grids based on coarse
preliminary reconstructions obtained on lower
resolutiongrids. We have shovn previously how large
computationakavings (~75% for 1024 pixels) may be
obtainedn thisway [13].

We discussfour major approachego the solution of the
NNLS problem.

A. Least distance problem

TheNNLS problemcanberecastsaleastdistancgroblem
(LDP). Thisis theapproactakenby LawsonandHanson14].
In preliminaryexperimentausingthe codeprovidedin [14], we
found that the LDP-basedalgorithm performedpoorly when
appliedto large sparsesystemg13].

B. Quadratic program

Alternatively, problem NNLS can be reexpressedas a
quadratigprogram(QP)[11]

6(f1) = min uTAu + aT,u, (30)
neEQ’
with
Q 2{perM™  n>Ap>1} (31)
where
A=FTF, a=-2FTy; (32)
h=oc, 1=0, A=1Iyy, (33)

wherel ;v is anidentity matrix of dimensionequalto that of
the parametewector

SinceproblemQP is a subproblensolved at eachiteration
of mary constrained non-linear optimization algorithms;
efEcient,well-testedand numericallyrobust codeexists for its
solution. The formationof the matrix FTF is undesirablesit
introducesumericalerrors,so corventionalQP methodsmust
be modifedto obviate the needto calculatethis matrix. Gill et
al. describesuchanalgorithm,which is availableaspartof the
commerciaLSSOLandNAG libraries[15, 11]. Unfortunately
thisimplementatioris not suitablefor large sparsesystems.

Oneof themorepromisingQP-basedlgorithmtestedsofar
is the block principal pivoting methodof Portual et al. [16],
whichis specifcallyintendedfor large sparseNNLS problems,
andsolvesthe linear complementaryproblemof the QP In its
original form, it doesnothave facilitiesfor warm-startingusing
an initial estimate,and cannotexploit the separablenatureof
F. Neverthelessowing to the sparsityof F”F, which must
be stored, storagerequirementsare reasonable.even when
ORCOBRAiIs appliedto large datasetsComputationaburden
is perhapsan order of magnitudelower thanthat of the NAG
library’s densematrix QP algorithm.

C. Richardson iteration

Among all methodsinvesticated,the £rst-ordemRichardson
method[11, p. 276] appearsto offer the best compromise
betweenspeedof cornvergenceand memoryrequirements. It
alsosatisEesll of the desiredcharacteristicspeci£edabore.
TheRichardsoriterationis givenby:

A =p* D 1o BT (y-FatY)  (39)
where1¥) is the solutionvectoratiterationk anda > 0 is a

parameteaffectingcornvergence. Theiterationcorvergesto the
leastsquaresolutionunderthe conditions:

9 e ranggF7), 0<a<2/o} (35)



where o, is the largest singular value of F. In a manner
analogougo that proposedoy Cryer[17] we obtainan NNLS
solutionby modifying theiterationin 34:

max {0, [ﬂ(kl) + aFT (y — Fﬂ(kl))} }
j

1,2, ... ,NM (36)

~(k
i

j =

whereji; is the jth elementof i andthe operator||; extracts
the jth elementof a vectorargument. To avoid the difEculty
of £ndingthelargestsingularvalueof F, we initially seta to a
largenumberandreduceit by half until adecreasé successie
residualgs achiered. Theinitial valueof o shouldbe sethigh
enoughsothatthealgorithmdecreases atthe£rstiteration. A

aowchartof this algorithmappearsn Figure?.

Initialize

A% =0,k=0, a=qg

RSN

)= max {0, [,1(’“‘1) +a FT(y - F,‘M—U)] }
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Figure7: Flowchartillustratingthe RichardsorNNLS algorithm.

D. General non-linear techniques

A further alternatve is to solve the NNLS problemvia a
generalnon-linear iterative optimization scheme,such as a
conjugate gradientmethodwith parametetbound constraints.
An advantageof this classof methodsis thatit allows a more
oexible selectionof maximumlik elihood estimationcriterion.

We have not yet evaluatedthesemethodsfor applicationto the
ORCOBRANNLS problem.

In the experimentswhich follow, we emplg the modifed
£rst-orderRichardsoniteration specifedin (36). We choose
to storeF asa sparsematrix, ratherthanrecalculatingt every
iteration, asthis provesfasterfor this size datasetonsidering
theamountof RAM memoryavailable.

V1. ALGORITHM EVALUATION

A. Phantom imaging geometry and kinetics

We evaluatethe algorithmusing a phantomdatasetwhose
imaging and sourcegeometries Poissoncount statistics,and
tracer kinetics are modeledon an actual clinical myocardial
SPECTdataset. The latter is describedin detail in [7]. We
chooseto model our phantomafter this datasetas we wish,
in future work, to apply ORCOBRAto similar datasetsIn so
doing,we will beableto comparethe resultsobtainedto those
yieldedby othermethodswhich have beenusedto reconstruct
thesedata[7, 5].

A myocardialdefectnot presenin the patientdatahasbeen
includedso we may determinethe detectabilityof the defect.
Theregionsof the phantomdatasetaredelineatedn Figure8,
while thekineticsareshavn in Figure9.
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Figure8: The phantomdatasets basedon the sourceandimaging
geometryof theclinical dynamicSPECTdata.
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B. Reconstruction geometry and temporal sampling

We employ ORCOBRATto reconstructhe phantomimage
sequenc®n the non-uniformresolutiongrids which appearin
Figures10, 11 and 12. Thesegrids differ with respectto the
maximum resolutionof the sub-grid overlying the heart, the
respectie maximumresolutionshbeing40 x 40, 20 x 20 and
16 x 16 pixels. A 16 x 16 grid overliestheliver, andan8 x 8
grid, thebackgroundin all grids.

Design of sucha grid so that areasof high actiity and
interestsuch as the myocardium,left ventricular (LV) blood
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Figure 9: Phantomregion kinetics appearwith symbols denoting
sampletimes. For this set,eachtime pointcorrespondso anindividual
camerarotation. Pointsmarked with a’+' correspondo the sample
timesof thosecameraotationsincludedin thedatasinogramy.

pool and liver receive £ner discretizationrequiresonly crude
localization of theseareaswithin image space. A standard
staticreconstructioralgorithmmaybe usedfor this purposepr

ORCOBRAmMaybeappliedto alow resolutionuniform grid.

Figure 10: The coarsestgrid usedin theseexperimentsoffers a
maximumresolutionof 16 x 16 pixels. This grid is referredto asthe
16-16-8grid, andcontainsl36 pixels.

Owing to memoryconstraintsyve includein our measured
sinogramy, only the£rst23 of the45 single-rotatiorsinograms
acquiredby of the camera.This time point selectionis shovn
in Figure9.

All of the120generategbrojectionsperrotationareutilized
in thereconstruction.

A summaryof the imaging parametersppearsn Table1,
while parameteror the RichardsorNNLS algorithmarelisted
in Table2.

C. Performance metric

To evaluategoodness-of-Ebetweentrue TACs and TACs
recoveredby the algorithm,we baseour metricon M,,,, which
we de£nedn (19).

Figure 11: The 20-16-8 grid possesses maximum resolution of
20 x 20 pixels and contains184 pixels. The £nestresolutionregion
is extendedin this grid so thatits width spansan integral numberof
8 x 8-sizepixels.

Figure12: With amaximumresolutionof 40 x 40 pixels,the40-16-8
grid is the £nestupon which we reconstructthe dynamic image
sequencén theseexperiments.This grid contains388 pixels.

Tablel
Imagingparametewralues.
| Parameter | Value |
Imagingtime (minutes) 15
Time samplepointsin set 45
Time samplepoints
selected L) 23
Rotationsn set 45
Rotationsselected R) 23
Angularprojections
in setperrotation 120
Bins per
angularprojection(Q) 64
Table2

RichardsoNINLS algorithmparametewalues

| Parameter| Value |
[&7h) 10
€ 107°




LetQy, s € {A, B,C, D, E} representheregionsde£ned
in Figure 8. We defnethe true TAC of region 25 as ®,[!],
and its estimate,obtainedfor noise realizationi by ®i[1].
We may then measurethe goodness-of-£betweentrue and
reconstructedlACs over I noise-realizationsat a particular
noiselevel, for a particularpixel grid con£guratioras:

> osnm) 37)

nes

1< 1
ME == M, | D[], —
pow IZ P°N< [ ] |Qé‘
i=1
where|Q;| representshe numberof pixelsin region s.

D. Phantom data reconstruction results

Tables 3, 4, and 5 give values for A2, at various
noise-lerels, for the myocardium,myocardialdefectandliver,
respectiely. For testswhere noiseis present,resultsgiven
are averagedover I = 30 noiserealizations. Between-trial
standarddeviations are also tatulated. Resultsfor the LV
blood pool and backgroundare omitted for brevity, since
theseregions are usually of lessinterestin the diagnosisof
myocardialperfusiondefects.

Total count valuesfor the simulationsare given for the
full 45 rotation datasets. Owing to the reducedrotation
samplingschemeamployed,themeasuredinogramy to which
ORCOBRAIs appliedcontainsapproximately266,000counts.
This is lessthan53% of the total eventsrecordedfor the slice
of patientdataon which the phantomwasmodeled.

Figure 14 shavs the meanTACsrecoveredfor all phantom
regions at this noise level. These TACs were obtainedby
averaging the pixel TACs within each region Qg in the
reconstructeddynamic image sequence. Several samplesof
this sequenceappearin Figure 13. Intrarggion variability is
qguantif£edin termsof pixel TAC standarddeviation from the
meanasshovnin Figurel14.

Figure 15 illustratesan excerpt of the dynamic sequence
obtainedwhen ORCOBRA is appliedto a single realization
of a phantomsinogram. The correspondinglTACs appeatin
Figure 16. It is clearthat ‘cross-talk’ betweenthe liver and
backgroundeadsto underestimationf theliver TAC amplitude
andoverestimatiorof backgroundactivity.

All computationwas performedon a Pentiumlll 850MHz
processorequippedwith 512MB of RAM and 1GB of hard
disk swap space. Mean computationtimes for the various
simulationsappeaiin Table6.

VII. DISCUSSION

We have shovn how non-ngative basisfunctions, which
allow a spectralrepresentatiorof single compartmentracer
kinetics using non-ngative coeEcients, may be derived
from a chosenexponential spectrumvia the SVD and an
obliquerotation. The additionto the exponentialspectrumand
convolved exponentialspectrumof functionswhich allow for
modelingof blood pool andregions of constantactivity have
not beenobsered to increasethe dimensionof the resulting

Table3
Goodness-of-£of therecorerednormalmyocardialTACsis
evaluatedn termsof the metricM,fM, for variousnoise-lerelsand
grid resolutions Valuesaregiven + betweertrial standardleviations.
Thenumberof noiserealizationsl appearsn thelastcolumn.

Counts Pixels Noise
388 | 184 | 136 | realizations
0 1.37 3.72 3.11 1
5% 10° 1.90+0.4 | 3.93+0.4 | 3.49+0.3 30
Table4

Valuesof M, obtainedn the comparisorof trueandrecovered
myocardialdefectTACs.

Counts Pixels Noise
388 | 184 | 136 | realizations
0 1.46 2.86 4.80 1
5% 10° 274 +1.0 | 3.82+1.9 | 5,58+ 3.7 30
Table5

In termsof thethe metric M;;,,, the TAC for theliveris themore
accuratelyrecoveredthanthe TACs of otherregions.

Counts Pixels Noise
388 | 184 | 136 | realizations
o0 1.26 0.69 1.23 1
5% 10° 1.414+0.1 | 0.80+0.1 | 1.37+0.1 30
Table6

Computationastatisticsderived from the experimentalapplicationof
ORCOBRAto noise-fregphantomdata. The secondcolumngivesthe
time neededo calculateandstorethe systemmatrix F' for eachgrid
specif£edn columnone.Columnthreecontainshe numberof
Richardsoriterationsneededo £ndthe solutionwhich attains
e = 1075, while thefourth columngivesthetotal time to performall
iterations.Thetotal numberof coatingpoint operationgin gigacops)
for all Richardsoriterationsappearsn the £nalcolumn.

# F prep. | Iterations| Optim. Optim.
pixels || (min) time (min) | Goops
388 16.9 309 86.1 28.3
184 4.9 236 48.9 17.5
136 3.9 310 55.2 20.2

basisset. Approximationis achieved to within a meansquare
errorof 1.3%, andconsequentlgonstitutesa very smallsource
of errorin thedynamicreconstructiorproblem.

Scrutiry of both the recorered TACs in Figure 14 and
the reconstructeddynamic sequencein Figure 13 reveals
that the myocardialdefectis easily discerniblefrom healtly
myocardium. Limited resolution,and possiblythe use of the
non-uniformresolutiongrid, leadsto ‘bleeding’ of regions so
that the normal myocardialTAC is underestimatedvhile that



Table7
Computationastatisticsderived from the experimentalpplicationof
ORCOBRAtothe5 x 10° countphantomdata. The quantitiedisted

aredescribedn the captionof Table6. Whereapplicablemean
valuesover 30 testsaregiven+ onestandardleviation.

# F prep. | Iterations Optim. Optim.
pixels || (min) time (min) Groops
388 16.1 107.7+£19.8 | 31.6 +11.0 | 9.9+ 1.8
184 5.2 87.0+18.1 19.9+£10.6 | 6.5£1.3
136 4.2 81.2+ 154 145+ 2.7 54+1.0

Figure13: Snapshot®f the reconstructedlynamicsequence.[!],

which results from the application of ORCOBRA to a dataset
containing2.66 x 10° total counts, a selectedsubsetof a full 45

rotation, 120 projectionset containing5 x 10 counts. The source
distribution was reconstructedn the 40-16-8grid shovn in Figure
12. Thesourcentensitieswhich appeaiabore arethe averageof those
obtainedover 30 noise realizations. The myocardialdefectis well

differentiatedrom the surroundinghealtly tissue.

of the lessintenselLV blood pool is overestimated.Similarly,

theliver TAC is underestimatedandits actiity clearly bleeds
into the surroundingbackgroundJeadingto overestimateof

theactvity in thelatter However, meansquareerrorsfor these
clinically relevant regions are belov 6%, even though only

half the realistic numberof photoncountsfor a single slice
99m Tc-teboroximemyocardialstudy are utilized. Figures15
and16 shaw resultsanalogougo thosewhich appeain Figures
13and14, for the casewhereORCOBRAIs appliedto asingle
noiserealization.

Table 7 indicatesthat the highestresolution40-16-8grid,
which is illustratedin Figure 12, is reconstructedn a mean
time of 48 minuteson a mid-speedPentiumlll CPU. This
includesthe 16 minutesneededo calculateandstoreF, which
may then be usedin multiple subsequenapplicationsof the
algorithmto datasetdor which the projection geometryand
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Figure 14: TACs obtainedby £ndingthe meanTAC of eachregion

of the full dynamic reconstructedsequence several time samples
of which appearin Figure 13. Standarddeviations plotted relateto

intrarggion variation of individual pixel TACs. Although ‘bleeding’

of regions leadsto the overestimationof the actvity in lessintense
regions at the expenseof underestimatingegions of high actiity

suchasthe healtty myocardiumand liver, recorered TAC quality is

sufEcientto allow isolationof themyocardialdefect.
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Figure15: Snapshot®f the reconstructedlynamicsequence.[l],
which resultsfrom theapplicationof ORCOBRALto a singlesinogram
containing2.66 x 10° total counts.CorrespondingACsareshavn in
Figurel6.

generalkinetic modelareappropriate.The chosenRichardson
terminationtoleranceof ¢ = 10~ proved overly stringentand
executiontimesmay be halved without materiallyaffectingthe
quality of the reconstructionby selectinga more reasonable
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Figure 16: Mean TACs for eachregion recorered from a single
sinogranrealizationat2.66 x 10° total counts.

valuefor this parametersuchase = 10~2. ComparingTable
6 (applicationto noisy-free data) and Table 7 (application
to noisy data) we seethat the numberof iterationsrequired
to reachthe termination criterion in the noise-freecaseis
greater This is probablydue to the greatersmoothnessnd
convexity of the costfunction surfacein the noise-freecase,
which allows a bettersolutionto befound, albeitafteralonger
searchprocessFor dataset®f this size,computatiortimesare
likely to be signiEcantlyimproved by increasingthe available
RAM memoryto 1.5GB, asthis will eliminatethe delaysdue
to memoryswappingbetweenrRAM andharddisk swap space
experiencechere.

The 503 minutesrequiredto £nd the oblique-rotatechasis
is prohibitive in clinical applications, especially since the
ORCOBis dependenbn the blood input functionandmustbe
recalculatedfor eachstudy This problemmay be overcome
by applyingthe SVD to the original exponentialspectrum(4)
ratherthanthe convolved spectrum. An afEne transformation
may then be found that producesa non-ngative basissetin
exactly the samemannerdescribedin Sectionlll-C. This
setis appropriatefor a wide rangeof studies,asit may be
convolvedwith theinputfunctionfor a particularstudyto form
a TAC basis. Sucha solution for the exponentialspectrum
chosenin Sectionlll-D was found in 42 minutes, and had
similar approximatingperformanceto the ORCOB used in
the simulations. However, modeling of constantTAC offset
function (8) is understandablypoor, sincethis function cannot
bemodeledn theuncorvolvedspectrumwithout knowledgeof
the input function. Accurateapproximationof suchfunctions
requiresaugmentatiorof the ORCOBwith a constanfunction.
This hasthe disadwantageof increasingthe size of the inverse
problemby afactorof (M + 1)/M.

A secondcharacteristicof the algorithm which detracts
from its clinical utility is the requirementhata goodestimate

of thebloodinputfunctionbeavailable. Accuratemeasurement
of this function via arterial blood samplingis logistically
dif£cult and signi£cantly increasesthe cost and compleity
of ECT studies. An alternatve is to estimatethe blood input
functionfrom theactiity within theleft ventricularbloodpool.
This is difEcult in the caseof the DRIP problem, since the
activity within this region cannotbe obtainedfrom animage
series. Reutteret al. have shovn how a basisof 16 B-splines
areableto approximatewith reasonabl@ccurag the regional
TACsof myocardialstudieq12]. While generabpproximating
functionssuchas B-spinesdo not enforceconsisteng with a
particular kinetic model, they appearto be adequatefor the
solution of the DRIP problemwhen the numberof regional
TACs to be estimated(and hencethe size of the inverse
problem)is small. In casesvherethe applicationof standard
(static) reconstructionalgorithms to inconsistentprojection
datais suftcient to allow the image domainto be crudely
segmentedinto bulk regions (myocardium, liver, LV blood
pool andbackground)reasonablestimatesor thebloodinput
function might be obtaineddirectly from projectionsusingthe
methodof Reutteret al. ORCOBRA could then be invoked
to producehigherresolutionreconstructiongirectly from the
projectiondata. The consisteng betweerthe meanTAC of the
LV bloodpool obtainedby ORCOBRA,andthe input function
estimatemight serne asa measuref theaccuray of thelatter.

Futurework will involve the developmentof second-order
iterative methodsin order to increasethe corvemgencerate
of ORCOBRA. The algorithm will also be further evaluated
through its applicationto the clinical data upon which the
phantomwasmodeled.
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